1.The cannabinoid CB1 receptor antagonist rimonabant stimulates 2-deoxyglucose uptake in skeletal muscle cells by regulating the expression of phosphatidylinositol-3-kinase.
Esposito I;Proto MC;Gazzerro P;Laezza C;Miele C;Alberobello AT;D'Esposito V;Beguinot F;Formisano P;Bifulco M Mol Pharmacol. 2008 Dec;74(6):1678-86. doi: 10.1124/mol.108.049205. Epub 2008 Sep 18.
The endocannabinoid system regulates food intake, energy, and glucose metabolism at both central and peripheral levels. We have investigated the mechanism by which it may control glucose uptake in skeletal muscle cells. Detectable levels of the cannabinoid receptor type 1 (CB1) were revealed in L6 cells. Exposure of differentiated L6 myotubes to the CB1 antagonist rimonabant (SR141716) selectively increased 2-deoxyglucose uptake (2-DG) in a time- and dose-dependent manner. A similar effect was induced by genetic silencing of CB1 by small interfering RNA. Protein expression profiling revealed that both the regulatory p85 and the catalytic p110 subunits of the phosphatidylinositol-3-kinase (PI3K) were increased by SR141716. No significant change in the cellular content of other known molecules regulating PI3K was observed. However, phosphoinositide-dependent kinase-1, Akt/protein kinase B, and protein kinase Czeta activities were rapidly induced after SR141716 treatment of L6 cells in a PI3K-dependent manner. The stimulatory effect of SR141716 on PI3K expression and activity was largely prevented by N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H-89), an inhibitor of the cAMP-dependent protein kinase.
2.Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells.
Oh SH;Lim SC J Pharmacol Exp Ther. 2009 Apr;329(1):112-22. doi: 10.1124/jpet.108.144113. Epub 2009 Jan 12.
Endoplasmic reticulum (ER) stress causes cell survival or death, which is dependent on the type of cell and stimulus. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) and its analog, dihydrocapsaicin (DHC), induced caspase-3-independent/-dependent signaling pathways in WI38 lung epithelial fibroblast cells. Here, we describe the molecular mechanisms induced by both chemicals. Exposure to capsaicin or DHC caused induction of p53, p21, and G(0)/G(1) arrest. DHC induced massive cellular vacuolization by dilation of the ER and mitochondria. Classic ER stress inducers elicited the unfolded protein response (UPR) and up-regulation of microtubule-associated protein 1 light chain-3 (LC3) II. DHC induced ER stress by the action of heavy chain-binding protein, IRE1, Chop, eukaryotic initiation factor 2alpha, and caspase-4 and, to a lesser level, by capsaicin treatment. DHC treatment induced autophagy that was blocked by 3-methyladenine (3MA) and accumulated by bafilomycin A1. Blocking of DHC-induced autophagy by 3MA enhanced apoptotic cell death that was completely inhibited by treatment of cells with benzyl-oxcarbonyl-Val-Ala-Asp-fluoromethyl ketone. Knockdown of Ire1 down-regulated the DHC-induced Chop and LC3II and enhanced caspase-3 activation.
3.Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide.
Cai H;Li Z;Davis ME;Kanner W;Harrison DG;Dudley SC Jr Mol Pharmacol. 2003 Feb;63(2):325-31.
Hydrogen peroxide mediates vasodilation, but the mechanisms responsible for this process remain undefined. We examined the effect of H(2)O(2) on nitric oxide (NO*) production and the signaling events involved. NO* release from bovine aortic endothelial cells was detected with an NO*-specific microelectrode. The addition of H(2)O(2) caused a potent dose-dependent increase in NO* production. This was partially Ca(2+)-dependent because BAPTA/AM reduced NO* production at low (<50 microM) but not high (>100 microM) concentrations of H(2)O(2). Phosphatidylinositol (PI) 3-kinase inhibition [with wortmannin or 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], infection with a dominant-negative mutant of Akt, or mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) inhibition (with PD98059 or U0126) partially attenuated, whereas inhibition of both PI 3-kinase and MEK1/2 abolished H(2)O(2)-dependent NO* production. ERK1/2 seemed necessary for NO* production early (<5 min) after H(2)O(2) addition, whereas PI 3-kinase/Akt was more important at later time points. Phosphorylation of endothelial nitric-oxide synthase (eNOS) at serine 1179 was observed >10 min after the addition of H(2)O(2), and this was prevented by wortmannin but not by PD98059.