Epothilone D - CAS 189453-10-9
Catalog number: B0084-086493
Category: Inhibitor
Not Intended for Therapeutic Use. For research use only.
Molecular Formula:
C27H41NO5S
Molecular Weight:
491.68
COA:
Certificate of Analysis-Epothilone D 189453-10-9 B15JA0722  
Targets:
Microtubule/Tubulin
Description:
Epothilone D is a natural polyketide compound isolated from the myxobacterium Sorangium cellulosum. Also known as desoxyepothilone B, epothilone D binds to tubulin and inhibits the disassembly of microtubules, resulting in the inhibition of mitosis, cellular proliferation, and cell motility.
Ordering Information
Catalog Number Size Price Stock Quantity
B0084-086493 10 mg $190 In stock
B0084-086493 50 mg $890 In stock
Bulk Inquiry
Publictions citing BOC Sciences Products
  • >> More
Purity:
≥ 98.0%
Appearance:
White solid
Synonyms:
Oxacyclohexadec-13-ene-2,6-dione, 4,8-dihydroxy-5,5,7,9,13-pentamethyl-16-(1E)-1-methyl-2-(2-methyl-4-thiazolyl)ethenyl-, (4S,7R,8S,9S,13Z,16S)-; Oxacyclohexadec-13-ene-2,6-dione, 4,8-dihydroxy-5,5,7,9,13-pentamethyl -16-(1-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-,(4S-(4R*,7S,8R*,9R*,1 3Z,16R*(E)))-; (3S,7S,14S,15S,16R)-3,15-Dihydroxy-2,2,10,14,16-pentamethyl-7-[1-(2-methyl-1,3-thiazol-4-yl)prop-1-en-2-yl]-6-oxacyclohexadec-9-ene-1,5-dione; Epothilone D; Desoxyepothilone B; (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-5,5,7,9,13-pentaMethyl-16-[(1E)-1-Methyl-2-(2-Methyl-4-thiazolyl)ethenyl]oxacyclohexadec-13-ene-2,6-dione; 12,13-Desoxyepothilone B; Epo D
Solubility:
Chloroform (Slightly), DMSO (Slightly)
Storage:
Store at -20ºC Freezer
MSDS:
Inquire
Application:
Anti-neoplastic
Quality Standard:
In-house Standard
Quantity:
Grams-Kilos
Boiling Point:
663.658 °C at 760 mmHg
Melting Point:
63-66ºC
Density:
1.085 g/cm3
InChIKey:
XOZIUKBZLSUILX-XWIMUJDOSA-N
InChI:
1S/C27H41NO5S/c1-16-9-8-10-17(2)25(31)19(4)26(32)27(6,7)23(29)14-24(30)33-22(12-11-16)18(3)13-21-15-34-20(5)28-21/h11,13,15,17,19,22-23,25,29,31H,8-10,12,14H2,1-7H3/b16-11-,18-13+/t17-,19-,22-,23-,25-/m0/s1
Canonical SMILES:
CC1CCCC(=CCC(OC(=O)CC(C(C(=O)C(C1O)C)(C)C)O)C(=CC2=CSC(=N2)C)C)C
Current Developer:
Kosan.
1.Nanomolar concentrations of epothilone D inhibit the proliferation of glioma cells and severely affect their tubulin cytoskeleton
Dietzmann, D. Kanakis, E. Kirches, S. Kropf, C. Mawrin and K. Dietzmann. Journal of Neuro-Oncology 65: 99–106, 2003
Since a long time, colchizine, podophyllotoxins and vinblastin are known to cause cell death by destabilizing microtubules. However, not only agents promoting microtubule degradation might be used as antiproliferative and cytotoxic drugs, but also microtubule stabilizing agents. Microtubules are small hollow cylinders composed of 13 parallel rows of globular proteins, α- and β-tubulin. These cylinders can grow on one edge and melt down at the other by non-enzymatic addition or removal of tubulin heterodimers. The balance between polymerization and depolymerization depends on the accessible concentration of free, soluble tubulin, but is modulated by some accessory proteins and strongly influenced by certain drugs, which can bind to specific sites of the β-tubulin molecule. The drug taxol, which was discovered in the early 80s, was the first example of such a compound, which binds β-tubulin and thereby inhibits tubulin depolymerization. In the presence of taxol, microtubule turnover is disturbed by this stabilizing effect.
2.Synthesis of Epothilone D with the Forced Application of Oxycyclopropane Intermediates
L. Hurski and O. G. Kulinkovich. Russian Journal of Organic Chemistry, 2011, Vol. 47, No. 11, pp. 1653−1674.
The yields of epothilone D (I) in the synthesis we developed in the longest linear successions of 23 stages proceeding from diethyl adipate and 24 stages, from (R)-methyl 2,3-О-isopropylidene glycerate (XX) were 2 and 1.6% respectively. It is close to the average number of stages and overall yield (2.3%) in the previously described approaches. The overall number of stages of the synthesis of epothilone D (I) carried out in this study was as expected considerably larger than the average number in the known syntheses. Yet as the advantages of the used approach should be mentioned the experimental simplicity of performing the reactions of cyclopropanols preparation and the reactions of the cleavage of the three-membered ring of hydroxycyclopropane intermediates, and also the low price of the corresponding reagents and catalysts. The latter statement was quantitatively illustrated by the estimation from the catalog data the average price of the molar amounts of reagents and the corresponding proportional quantities of catalysts. In the previously published syntheses of epothilone D it equaled 37 × 103 € ·mol–1, whereas in this work it was 11×103 € ·mol–1. The latter value had the smallest absolute magnitude, and calculated per 1% of epothilone D (I) yield this approach was in the first five “profitable” procedures.
3.Building Blocks for (C15–C3)-Modified Epothilone D Analogs
R. F. Valeev, R. F. Bikzhanov, and M. S. Miftakhov. Russian Journal of Organic Chemistry, 2014, Vol. 50, No. 10, pp. 1511–1519
We previously planned to synthesize new metabolically and chemically more stable epothilone D (I) analogs, compounds II and III with isosterically displaced methylene unit in the C15–C3 fragment. We presumed that, unlike readily hydrolyzable in vivo macrolide I, its analogs II and III contain more stable lactam and lactone fragments, respectively (the C1=O carbonyl group is sterically hindered and is stabilized by the C1=O···HO–C2 hydrogen bond, and elimination of the C2-hydroxy group is impossible). Such isosteric rearrangement of the C15–C3 fragment of natural epothilone I has not been reported. This structural modification should affect the stability of the resulting compounds and change their conformation upon binding to tubulin, so that their biological activity should change. The above considerations determined the choice of compounds II and III as target structures. Compound III is an isostere of epothilone D (I), which is important from the viewpoint of estimation of the effect of modification of the C15–C3 fragment on the biological activity of epothilones.
4.Alternative Synthesis of Thiazole-Substituted Fragment С10–С21 of Epothilone D Analog
R. F. Valeev, R. F. Bikzhanov, and M. S. Miftakhov. Russian Journal of Organic Chemistry, 2015, Vol. 51, No. 5, pp. 660–663.
Epothilones, especially their analogs, are very promising objects for designing and synthesis of anticancer compounds of tubulin-polymerizing (taxol-like) action. In our planned synthetic approach to analogs of epothilone D 1a and 1b a block 2 with thiazole substituent is one of the key synthons.
Molecular Weight Calculator Molarity Calculator Solution Dilution Calculator

Related Microtubule/Tubulin Products


CAS 154554-41-3 CHM 1

CHM 1
(CAS: 154554-41-3)

CHM 1 is an apoptosis inducer with potent antitumor activity in human hepatocellular carcinoma. It inhibits tubulin polymerization in vitro and in vivo, and res...

PBOX-15
(CAS: 354759-10-7)

PBOX-15 is a novel microtubule inhibitor, which induces apoptosis, upregulates death receptors, and potentiates TRAIL-mediated apoptosis in multiple myeloma cel...

CAS 945771-74-4 BNC-105

BNC-105
(CAS: 945771-74-4)

BNC105 is a novel compound being developed by Bionomics as a Vascular Disrupting Agent (VDA) for treatment of cancer. VDAs are drugs that disrupt the blood vess...

CAS 41179-33-3 CMPD-1

CMPD-1
(CAS: 41179-33-3)

CMPD-1, also called MK2a Inhibitor, inhibits tubulin polymerisation. It inhibit p38α-mediated MK2a phosphorylation (apparent Ki = 330 nM).

CAS 33069-62-4 Paclitaxel

Paclitaxel
(CAS: 33069-62-4)

Paclitaxel, derived from the bark of the Pacific yew tree, has a broad antineoplastic spectrum used in cancer chemotherapy. It promotes and stabilizes tubulin p...

ALB 109564(a) dihydrochloride
(CAS: 1300114-12-8)

ALB 109564(a) is a Tubulin inhibitor as a semi-synthetic derivative of the vinka alkaloid originated by AMRI. It can bind to tubulin monomers and inhibit microt...

CAS 219989-84-1 Ixabepilone

Ixabepilone
(CAS: 219989-84-1)

Ixabepilone (also known as azaepothilone B, or BMS-247550) is an orally bioavailable microtubule inhibitor. Ixabepilone was a semisynthetic analogue of epothil...

CAS 90332-66-4 7-xylosyltaxol

7-xylosyltaxol
(CAS: 90332-66-4)

7-xylosyltaxol is a taxol (Paclitaxel) derivative, which binds to tubulin and inhibits the disassembly of microtubules.

CAS 442-51-3 Harmine

Harmine
(CAS: 442-51-3)

Harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 ex...

CAS 917111-44-5 Lexibulin

Lexibulin
(CAS: 917111-44-5)

lexibulin, also known as CYT997,  is an orally bioavailable small-molecule with tubulin-inhibiting, vascular-disrupting, and potential antineoplastic activ...

CAS 108852-90-0 Nemorubicin

Nemorubicin
(CAS: 108852-90-0)

Nemorubicin, currently being developed by Nerviano, is a doxorubicin derivative that differs significantly from its parent drug in terms of spectrum of antitumo...

CAS 110417-88-4 Dolastatin 10

Dolastatin 10
(CAS: 110417-88-4)

Dolastatin 10 is an inhibitior of microtubule disassembly (IC50= 1.2μM) and potently inhibits vincristine binding to tubulin in a noncompetitive manner ( Ki= 1....

CAS 1402727-29-0 PE859

PE859
(CAS: 1402727-29-0)

PE859 is a potent dual inhibitor of tau and Aβ aggregation with IC50 values of 0.66 and 1.2 μM, respectively.

CAS 2068-78-2 Vincristine

Vincristine
(CAS: 2068-78-2)

Vincristine is an inhibitor of polymerization of microtubules by binding to tubulin with IC50 of 32 μM.

CAS 141430-65-1 ABT 751

ABT 751
(CAS: 141430-65-1)

ABT 751, also called E7010, is a a novel bioavailable tubulin-binding and antimitotic agent (in neuroblastoma: IC50= 0.6–2.6 μM; in non-neuroblastoma cell line...

CAS 71486-22-1 Vinorelbine

Vinorelbine
(CAS: 71486-22-1)

Vinorelbine, also called Navelbine, a 5′NOR semisynthetic vinca alkaloid which arrests tumor cell growth in metaphase by binding to tubulin and preventing form...

CAS 204205-90-3 Indibulin

Indibulin
(CAS: 204205-90-3)

Indibulin, also called D 24851, estabilizes tubulin polymerization (IC50 = 0.3 μM) and induces tumor cell cycle arrest and apoptosis. In vitro: blocking cell cy...

CAS 865-21-4 Vinblastine

Vinblastine
(CAS: 865-21-4)

Vinblastine is inhibitor of nAChR and can inhibit the formation of microtubule. It is a natural alkaloid isolated from the plant Vinca rosea Linn. It binds to t...

CAS 518-28-5 Podophyllotoxin

Podophyllotoxin
(CAS: 518-28-5)

Podophyllotoxin, a kind of non-alkaloid toxin lignan extracted from the roots and rhizomes of Podophyllum plant, has been shown to inhibit the growth of various...

CAS 474645-27-7 MMAE

MMAE
(CAS: 474645-27-7)

MMAE, whose full name is Monomethyl auristatin E, inhibits tubulin polymerization so that it inhibits cell division.

Chemical Structure

CAS 189453-10-9 Epothilone D

Quick Inquiry

Verification code

Featured Items