Anacetrapib - CAS 875446-37-0
Catalog number: 875446-37-0
Category: Inhibitor
Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Molecular Formula:
Molecular Weight:
Anacetrapib (MK0859) is a potent, selective, reversible rhCETP and mutant CETP(C13S) inhibitor with IC50 of 7.9 nM and 11.8 nM, increases HDL-C and decreases LDL-C, does not increase aldosterone or blood pressure.
MK-0859, Anacetrapib
Canonical SMILES:
Current Developer:
1.Gateways to clinical trials.
Tomillero A;Moral MA Methods Find Exp Clin Pharmacol. 2009 Apr;31(3):183-226.
(+)-Dapoxetine hydrochloride, [(123)I]-BZA, 9-Aminocamptothecin; Abacavir sulfate/lamivudine, Adalimumab, Adefovir dipivoxil, Alemtuzumab, Alvocidib hydrochloride, Ambrisentan, Amsilarotene, Anacetrapib, Anakinra, Apricitabine, Aripiprazole, Arsenic trioxide, Atazanavir sulfate, Atazanavir/ritonavir, Atrasentan, Azacitidine; Banoxantrone, Bazedoxifene acetate, Bevacizumab, Bexarotene, Biphasic insulin aspart, Bortezomib, Bosentan, Bromfenac; Cachectin, Calcipotriol/betamethasone dipropionate, Canakinumab, Carfilzomib, CAT-354, CCX-282, Certolizumab pegol, Cetuximab, Choline fenofibrate, Clevudine, Clofarabine, CNTO-328, Corifollitropin alfa, Crofelemer; Daptomycin, Darbepoetin alfa, Darunavir, Dasatinib, Decitabine, Deferasirox, Denosumab, Duloxetine hydrochloride, Dutasteride; Emtricitabine, Enfuvirtide, Entecavir, Epoetin zeta, Erlotinib hydrochloride, Escitalopram oxalate, Eslicarbazepine acetate, Eszopiclone, Etravirine, Everolimus, Exenatide, Ezetimibe, Ezetimibe/simvastatin; Farglitazar, Febuxostat, Fosamprenavir calcium, FX-06; Gabapentin enacarbil, Gefitinib; HIVIS DNA; Imatinib mesylate, INCB- 18424, Indacaterol, Inotuzumab ozogamicin, Insulin detemir; JNJ-26854165; Lacosamide, Landiolol, Laromustine, Lenalidomide, Liposomal doxorubicin, L-NAME, Lopinavir, Lopinavir/ritonavir, Lumiracoxib; Maraviroc, Mepolizumab, Methoxy polyethylene glycol- epoetin-beta, Miglustat, MK-0493, MVA-CMDR, Mycophenolic acid sodium salt; Natalizumab, Nepafenac, Neratinib, Neridronic acid, Nesiritide, Nilotinib hydrochloride monohydrate; Olmesartan medoxomil, Omacetaxine mepesuccinate, Omalizumab; Paclitaxel poliglumex, Palifermin, Patupilone, Pegfilgrastim, Peginterferon alfa-2a, Peginterferon alfa-2b, Peginterferon alfa-2b/ ribavirin, Pemetrexed disodium, PHA-848125, Pitavastatin calcium, Posaconazole, Povidone-iodine liposome complex, Prasugrel, Pregabalin, Prucalopride; Raltegravir potassium, Retigabine, Revaprazan hydrochloride, rhFSH, Rilpivirine, Rivaroxaban, Romidepsin, Rosuvastatin calcium, RWJ-676070; SAR-109659, Sitagliptin phosphate monohydrate, Sorafenib, Stavudine/Lamivudine/Nevirapine, Sunitinib malate; Tadalafil, Telaprevir, Telbivudine, Tenofovir disoproxil fumarate, Tenofovir disoproxil fumarate/emtricitabine, Tenofovir disoproxil fumarate/emtricitabine/efavirenz, Teriparatide, Tigecycline, Tiotropium bromide, Tipifarnib, Tipranavir, Tocilizumab, Trifluridine/TPI; UP-780; Vandetanib, Vardenafil hydrochloride hydrate, Vatalanib succinate, Vitespen, Vorinostat; Yttrium 90 (90Y) ibritumomab tiuxetan; Zoledronic acid monohydrate.
2.Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib.
Yvan-Charvet L;Kling J;Pagler T;Li H;Hubbard B;Fisher T;Sparrow CP;Taggart AK;Tall AR Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1430-8. doi: 10.1161/ATVBAHA.110.207142. Epub 2010 May 6.
OBJECTIVE: ;To examine the effects of treatments with niacin or anacetrapib (an inhibitor of cholesteryl ester transfer protein) on the ability of high-density lipoprotein (HDL) to promote net cholesterol efflux and reduce toll-like receptor-mediated inflammation in macrophages.;METHODS AND RESULTS: ;A total of 18 patients received niacin, 2 g/d, for 4 weeks; 20 patients received anacetrapib, 300 mg/d, for 8 weeks; and 2 groups (n=4 and n=5 patients) received placebo. HDL samples were isolated by polyethylene glycol precipitation or ultracentrifugation, tested for the ability to promote cholesterol efflux in cholesterol-loaded THP-I or mouse peritoneal macrophages, or used to pretreat macrophages, followed by lipopolysaccharide exposure. HDL cholesterol levels were increased by 30% in response to niacin and by approximately 100% in response to anacetrapib. Niacin treatment increased HDL-mediated net cholesterol efflux from foam cells, primarily by increasing HDL concentration, whereas anacetrapib treatment increased cholesterol efflux by both increasing HDL concentration and causing increased efflux at matched HDL concentrations. The increased efflux potential of anacetrapib-HDL was more prominent at higher HDL cholesterol concentrations (>12 microg/mL), which was associated with an increased content of lecithin-cholesterol acyltransferase (LCAT) and apolipoprotein E and completely dependent on the expression of ATP binding cassette transporters (ABCA1 and ABCG1).
3.High Density Lipoprotein (HDL) Modulation Targets.
Mousa SS;Block RC;Mousa SA Drugs Future. 2010 Jan;35(1):33-39.
Given the strong genetic determinants of favorable HDL-C levels, the ability to procure the cardiovascular disease and longevity benefits associated with this mediator of the reverse cholesterol transport pathway through pharmaceutical intervention is challenging. Niacin is still the most robust HDL-C raising pharmaceutical agent on the market at its use leads to elevations up to 35%. Cholesteryl ester transfer protein (CETP) and endothelial lipase (EL) are two targets involved in the reverse cholesterol transport pathway that have become therapeutic targets of various investigations for raising HDL. However, the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial was stopped in December 2006 due to excess mortality in the group of patients treated with torcetrapib, a CETP inhibitor. Other CETP inhibitors being studied include anacetrapib and JTT-705. Other CEPT inhibitors including TA-8995, DRL-17822, JTT-302, and others are under investigation. Additionally a biologic target CETi-1, an investigational vaccine in phase II development designed to elicit antibodies that bind and inhibit the activity of CETP leading to blocking the ability of the protein to transfer cholesterol from HDL to LDL and thus causing HDL cholesterol levels to rise is under clinical investigation for sometime.
Molecular Weight Calculator Molarity Calculator Solution Dilution Calculator

Related CETP Products

(CAS: 261947-38-0)

CP-532623, structurally related to Torcetrapib, is a potent inhibitor of cholesteryl ester transfer protein (CETP).

CAS 875446-37-0 Anacetrapib

(CAS: 875446-37-0)

Anacetrapib (MK0859) is a potent, selective, reversible rhCETP and mutant CETP(C13S) inhibitor with IC50 of 7.9 nM and 11.8 nM, increases HDL-C and decreases LD...

CAS 1186486-62-3 Evacetrapib

(CAS: 1186486-62-3)

Evacetrapib (LY2484595) is a drug that inhibits cholesterylester transfer protein, which transfers and thereby increases high-density lipoprotein and lowers low...

CAS 262352-17-0 Torcetrapib

(CAS: 262352-17-0)

Torcetrapib is a Cholesteryl ester transfer protein (CETP) inhibitor. CETP normally transfers cholesterol from HDL cholesterol to very low density or low densit...

CAS 939390-99-5 BMS 795311

BMS 795311
(CAS: 939390-99-5)

BMS 795311 is a potent cholesteryl ester transfer protein (CETP) inhibitor (IC50 = 4 nM in an enzyme-based scintillation proximity assay) that inhibits choleste...

CAS 211513-37-0 Dalcetrapib

(CAS: 211513-37-0)

Dalcetrapib induces a conformational change in CETP, when added to human plasma. .

Chemical Structure

CAS 875446-37-0 Anacetrapib

Quick Inquiry

Verification code

Featured Items