Study of the synergistic effect of 2-methoxy-4-formylphenol and sodium molybdenum oxide on the corrosion inhibition of 3CR12 ferritic steel in dilute sulphuric acid

Study of the synergistic effect of 2-methoxy-4-formylphenol and sodium molybdenum oxide on the corrosion inhibition of 3CR12 ferritic steel in dilute sulphuric acid

Loto, R. T. (2017).

Results in physics 7 (2017): 769-776.

The synergistic effect of the corrosion inhibition properties of 2-methoxy-4-formylphenol and sodium molybdenum oxide on the electrochemical property of 3CR12 ferritic stainless steel in 2M H2SO4 acid solution was assessed through coupon analysis, potentiodynamic polarization technique, IR spectroscopy and micro-analytical technique. Experimental data showed the combined admixture effectively inhibited the steel corrosion at the concentrations analyzed with a maximum inhibition efficiency of 94.47% and 89.71% from coupon analysis and potentiodynamic polarization due to the electrochemical action and inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mechanism of the redox reactions responsible to corrosion and surface deterioration. Results from corrosion thermodynamic calculations showed chemisorption adsorption mechanism. Infrared spectroscopic images exposed the functional groups of the molecules involved for the corrosion inhibition reaction. Micro-analytical images showed sharp contrast in surface morphology between the inhibited and corroded test specimens under study. Cracks, intergranular and pitting corrosion in addition to severe surface deterioration was observed in the uninhibited samples. Inhibitor adsorption fits the Langmuir isotherm model.

Study-of-the-synergistic-effect-of-2-methoxy-4-formylphenol-and-sodium-molybdenum-oxide-on-the-corrosion-inhibition-of-3CR12-ferritic-steel-in-dilute-sulphuric-acid

Products Recommended in this Publication