Top Clicks This Month

DEOXYNIVALENOL - CAS 51481-10-8

Quick Inquiry

Name:
* Email:
* Service & Products of Interest:
* Quantity:
* Verification code:
Please input "bocsci" as verification code.
Category
Main Product
Product Name
DEOXYNIVALENOL
Catalog Number
51481-10-8
Synonyms
DON; DEOXYNIVALENOL; 3ALPHA,7ALPHA,15-TRIHYDROXY-12,13-EPOXYTRICHOTHEC-9-EN-8-ONE; VOMITOXIN; 12,13-epoxy-3,7,15-trihydroxy-,(3-alpha,7-alpha)-trichothec-9-en-8-on; 12,13-epoxy-3-alpha,7-alpha,15-trihydroxy-9-trichothecen-8-one
CAS Number
51481-10-8
Description
Vomitoxin is a type B trichothecene, an epoxy-sesquiterpenoid. This mycotoxin can induce vomiting, diarrhea, and weight loss as well as other physiological and toxicological effects. It inhibits protein biosynthesis, binds to peptidyl transferase, and inhibits the synthesis of RNA and DNA, contributing to immunotoxicity.
Molecular Weight
296.32
Molecular Formula
C15H20O6
Quantity
Milligrams-Grams
Quality Standard
In-house Standard
COA
Certificate of Analysis-Deoxynivalenol 51481-10-8 B16Q042701  
MSDS
Inquire
Canonical SMILES
CC1=CC2C(C(C1=O)O)(C3(CC(C(C34CO4)O2)O)C)CO
InChI
1S/C15H20O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-9,11-12,16-17,19H,4-6H2,1-2H3/t8-,9-,11-,12-,13-,14-,15+/m1/s1
InChIKey
LINOMUASTDIRTM-QGRHZQQGSA-N
Size Price Stock Quantity
5 mg $198 In stock
25 mg $899 In stock

Bulk Inquiry

Name:
* Email:
* Service & Products of Interest:
* Quantity:
* Verification code:
Please input "bocsci" as verification code.
Structure
CAS 51481-10-8 DEOXYNIVALENOL
Specification
Purity
≥ 98.0%
Boiling Point
543.9ºC at 760mmHg
Melting Point
151-153ºC
Density
1.48 g/cm3
Appearance
White to off-white powder
Physical Description
White
Application
Potent protein synthesis inhibitor; Exhibits cytotoxic activity in vivo via the ribotoxic stress response; Induces p38-mediated gene expression and apoptosis in leukocytes
Storage
Store at 2-8ºC
Related Products
Reference Reading
1.Microbial Load of Hard Red Winter Wheat Produced at Three Growing Environments across Nebraska, USA.
Sabillón L1, Stratton J1, Rose DJ2, Regassa TH3, Bianchini A4. J Food Prot. 2016 Apr;79(4):646-54. doi: 10.4315/0362-028X.JFP-15-424.
Post-flowering weather variables in farm fields may influence the microbial loads of wheat grain. In this study, the effects of weather variables following wheat flowering on the microbiological quality of wheat were evaluated over two consecutive growing seasons (2011 to 2012 and 2012 to 2013) in the state of Nebraska, USA. Three hard red winter wheat lines, including two commercial cultivars (Overland and McGill) and one experimental line (NW07505), were planted in three regions with contrasting key weather variables (Southeast, South Central, and Panhandle district) to ensure that developing seeds were exposed to different weather conditions. The natural microbial flora and deoxynivalenol concentrations of 54 freshly harvested wheat samples (three samples per wheat line, with a total of 9 samples per district) were analyzed to evaluate the impacts of the weather conditions prevailing from flowering to harvesting in each growing location (district) and season on the microbiological quality and safety of wheat grain.
2.Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains.
Tian Y1, Tan Y1, Liu N1, Liao Y2, Sun C3, Wang S1, Wu A1. Front Microbiol. 2016 Mar 30;7:395. doi: 10.3389/fmicb.2016.00395. eCollection 2016.
Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety.
3.Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects.
Smith MC1, Madec S2, Coton E3, Hymery N4. Toxins (Basel). 2016 Mar 26;8(4). pii: E94. doi: 10.3390/toxins8040094.
Some foods and feeds are often contaminated by numerous mycotoxins, but most studies have focused on the occurrence and toxicology of a single mycotoxin. Regulations throughout the world do not consider the combined effects of mycotoxins. However, several surveys have reported the natural co-occurrence of mycotoxins from all over the world. Most of the published data has concerned the major mycotoxins aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEA), fumonisins (FUM) and trichothecenes (TCTs), especially deoxynivalenol (DON). Concerning cereals and derived cereal product samples, among the 127 mycotoxin combinations described in the literature, AFs+FUM, DON+ZEA, AFs+OTA, and FUM+ZEA are the most observed. However, only a few studies specified the number of co-occurring mycotoxins with the percentage of the co-contaminated samples, as well as the main combinations found. Studies of mycotoxin combination toxicity showed antagonist, additive or synergic effects depending on the tested species, cell model or mixture, and were not necessarily time- or dose-dependent.
4.Deoxynivalenol inhibits proliferation and induces apoptosis in human umbilical vein endothelial cells.
Deng C1, Ji C1, Qin W1, Cao X1, Zhong J2, Li Y2, Srinivas S3, Feng Y4, Deng X5. Environ Toxicol Pharmacol. 2016 Mar 26;43:232-241. doi: 10.1016/j.etap.2016.02.002. [Epub ahead of print]
Deoxynivalenol (DON) is a stable mycotoxins found in cereals infected by certain fungal species and causes adverse health effects in animals and human such as vomiting, diarrhea and reproductive toxicity. In this study, we investigated the toxic and apoptotic effects of DON in human umbilical vein endothelial cells (HUVECs), a good model for studying inflammation. The results show that DON significantly inhibited the viability of HUVECs. DON could also inhibit the proliferation of HUVECs through G2/M phase arrest in cell cycle progression. Moreover, oxidative stress induced by DON was indicated by observations of increased levels of reactive oxygen species (ROS). In addition, DON also causes mitochondrial damage by decreasing the mitochondrial membrane potential and inducing apoptosis by up-regulation of apoptosis-related genes like caspase-3, caspase-9, and Bax genes, and down-regulation of Bcl-2 gene. These results together suggest that DON could induce cell cycle arrest, oxidative stress, and apoptosis in HUVECs.
2005 - BOC Sciences | All rights reserved
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE
BOCSciences
X CLOSE