Main Product
Product Name:
Catalog Number:
CAS Number:
Molecular Weight:
Molecular Formula:
Chemical Structure

Reference Reading

1.Multivariable optimization of the micellar system for the ionic liquid-modified MEKC separation of phenolic acids.
Liu L1, Wu B1, Liu K1, Li CR1, Zhou X1, Li P2, Yang H3. J Pharm Biomed Anal. 2016 Apr 21;126:1-8. doi: 10.1016/j.jpba.2016.04.027. [Epub ahead of print]
An ionic liquid (IL)-modified micellar electrokinetic chromatography (MEKC) method was proposed for the separation and determination of eight phenolic acids. In order to increase separation efficiency and selectivity, the micelle system consisting of aqueous mixtures of ILs, Tween 20 and borate was optimized using a D-optimal design. A 16-run experimental plan was carried out. The results indicated that the addition of ILs in background electrolyte could significantly alter the electrophoretic behavior and improve the resolution of target analytes. By evaluating the electropherograms obtained, a satisfactory separation condition for all analytes was achieved in 10min with optimized buffer composed of 0.70% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate, 8.1% (w/w) polyoxyethylene sorbitan monolaurate (Tween 20) and 10mM sodium borate at pH 9.2. Under these conditions, all calibration curves showed good linearity (r2>0.9969), and accuracy (recoveries ranging from 94.
2.Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System.
Nabavi SF1, Habtemariam S2, Di Lorenzo A3, Sureda A4, Khanjani S5, Nabavi SM6, Daglia M7. Nutrients. 2016 Apr 28;8(5). pii: E248.
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain.
3.Interaction of Di-2-pyridylketone 2-pyridine Carboxylic Acid Hydrazone and Its Copper Complex with BSA: Effect on Antitumor Activity as Revealed by Spectroscopic Studies.
Li C1, Huang T2, Fu Y3, Liu Y4, Zhou S5, Qi Z6, Li C7,8. Molecules. 2016 Apr 28;21(5). pii: E563.
The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu.