1-Deoxynojirimycin hydrochloride - CAS 73285-50-4
Not Intended for Therapeutic Use. For research use only.
Category:
Inhibitor
Product Name:
1-Deoxynojirimycin hydrochloride
Catalog Number:
73285-50-4
Synonyms:
(2R,3R,4R,5S)-2-(Hydroxymethyl)-3,4,5-piperidinetriol Hydrochloride; 1-Deoxynojirimycin Hydrochloride; AT 2220; Duvoglustat Hydrochloride; Moranoline Hydrochloride; DNJ Hydrochloride
CAS Number:
73285-50-4
Description:
1-Deoxynojirimycin, also called Duvoglustat, is produced by Bacillus species. It is a glucose analog that can inhibit α-glucosidase I and II. 1-Deoxynojirimycin can prevent the formation of complex N-linked oligosaccharides in yeast and intact mammalian cells through inhibiting both α-glucosidase I and II. The IC50 values are ~2 µM. Phase II clinical development of duvoglustat for Glycogen storage disease type II is ongoing
Molecular Weight:
199.63
Molecular Formula:
C6H13NO4.HCl
Quantity:
Milligrams-Grams
Quality Standard:
In-house standard
COA:
Inquire
MSDS:
Inquire
Canonical SMILES:
C1C(C(C(C(N1)CO)O)O)O.Cl
InChI:
InChI=1S/C6H13NO4.ClH/c8-2-3-5(10)6(11)4(9)1-7-3;/h3-11H,1-2H2;1H/t3?,4?,5-,6+;/m1./s1
InChIKey:
ZJIHMALTJRDNQI-NTBRWAQFSA-N
Targets:
α- and β-glucosidases
Current Developer:
Originator Amicus Therapeutics
Chemical Structure
CAS 73285-50-4 1-Deoxynojirimycin hydrochloride

Related α- and β-glucosidases Products


CAS 79831-76-8 Castanospermine

Castanospermine
(CAS: 79831-76-8)

Castanospermine is an inhibitor of all forms of α- and β-glucosidases, especially glucosidase l. It inhibits lysosomal and neutral α-glucosidases with Ki values...

CAS 73285-50-4 1-Deoxynojirimycin hydrochloride

1-Deoxynojirimycin hydrochloride
(CAS: 73285-50-4)

1-Deoxynojirimycin, also called Duvoglustat, is produced by Bacillus species. It is a glucose analog that can inhibit α-glucosidase I and II. 1-Deoxynojirimycin...

Reference Reading


1.The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.
Khanna R1, Powe AC Jr1, Lun Y1, Soska R1, Feng J1, Dhulipala R1, Frascella M1, Garcia A1, Pellegrino LJ1, Xu S1, Brignol N1, Toth MJ1, Do HV1, Lockhart DJ1, Wustman BA1, Valenzano KJ1. PLoS One. 2014 Jul 18;9(7):e102092. doi: 10.1371/journal.pone.0102092. eCollection 2014.
Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA.
2.Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients.
Young-Gqamana B1, Brignol N, Chang HH, Khanna R, Soska R, Fuller M, Sitaraman SA, Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Boudes P, Lockhart DJ, Valenzano KJ, Benjamin ER. PLoS One. 2013;8(3):e57631. doi: 10.1371/journal.pone.0057631. Epub 2013 Mar 5.
Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies.
3.Chlorogenic acid derivatives with alkyl chains of different lengths and orientations: potent alpha-glucosidase inhibitors.
Ma CM1, Hattori M, Daneshtalab M, Wang L. J Med Chem. 2008 Oct 9;51(19):6188-94. doi: 10.1021/jm800621x. Epub 2008 Sep 11.
Alpha-glucosidases play important roles in the digestion of carbohydrates and biosynthesis of viral envelope glycoproteins. Inhibitors of alpha-glucosidase are promising candidates for the development of antitype II diabetics and anti-AIDS drugs. Here, we report the synthesis and alpha-glucosidase inhibitory activity of mono- and diketal/acetal derivatives of chlorogenic acid. The diketal derivatives showed more potent inhibitory activity than the monoketals. The 1,7-(5-nonanone) 3,4-(5-nonanone)-chlorogenic acid diketal showed remarkable inhibitory activity against alpha-glucosidases with potency better than that of 1-deoxynojirimycin hydrochloride. Four diasteremers of pelargonaldehyde diacetal and two of monoacetal derivatives of chlorogenic acid were synthesized in this study. They showed significant potent inhibition similar to or more potent than the ketal counterparts. Acetals with the alkyl chain oriented toward position 2 of chlorogenic acid showed more potent activity than those oriented toward position 6.
4.In vivo therapeutic protection against influenza A (H1N1) oseltamivir-sensitive and resistant viruses by the iminosugar UV-4.
Stavale EJ1, Vu H1, Sampath A2, Ramstedt U2, Warfield KL2. PLoS One. 2015 Mar 18;10(3):e0121662. doi: 10.1371/journal.pone.0121662. eCollection 2015.
Our lead iminosugar analog called UV-4 or N-(9-methoxynonyl)-1-deoxynojirimycin inhibits activity of endoplasmic reticulum (ER) α-glucosidases I and II and is a potent, host-targeted antiviral candidate. The mechanism of action for the antiviral activity of iminosugars is proposed to be inhibition of ER α-glucosidases leading to misfolding of critical viral glycoproteins. These misfolded glycoproteins would then be incorporated into defective virus particles or targeted for degradation resulting in a reduction of infectious progeny virions. UV-4, and its hydrochloride salt known as UV-4B, is highly potent against dengue virus in vitro and promotes complete survival in a lethal dengue virus mouse model. In the current studies, UV-4 was shown to be highly efficacious via oral gavage against both oseltamivir-sensitive and -resistant influenza A (H1N1) infections in mice even if treatment was initiated as late as 48-72 hours after infection.